Auf welche vier Arten können Viren mit Wirts-Populationen interagieren?

Interaktionen

R_0 = Basisreproduktionszahl

- Beschreibt wie sich ein Virus in einer immunologischer naiver Population verteilt
- = "Anzahl der empfänglichen Individuen, die von einem infizierten Tier infiziert werden"
- $R_0 = 1$ \rightarrow Virus hält sich in der Population, aber kann sich nicht weiter verbreitet
- $R_0 > 1$ \rightarrow Anteil der vom Virus-infizierten Tieren nimmt zu
- $R_0 < 1$ \rightarrow Virus wird aus der Population eliminiert

Interaktionen

In der Realität gibt es keine immunologisch naive Population → muss den Anteil empfänglicher Wirte berücksichtigen:

- $R_0 \times S = 1$ und S + I = 1
 - S = Empfänglicher Anteil der Population
 - I = immune Anteil der Population

- $I = 1-(1/R_0)$
 - Folge: Liegt der immune Anteil der Population über dem Schwellenwert, so kann sich die Infektion in der Bevölkerung nicht weiter ausbreiten
 - \rightarrow Bsp.: Masern (R₀ = 12-18); 92 94 % der Bevölkerung müssen geimpft oder immun sein, um eine Epidemie zu verhindern

Interaktionen

Einteilung der Wechselwirkung zwischen Viren und Wirtspopulationen in vier verschiedene Kategorien

Bei einer stabilen Interaktion verbleibt das Virus in der Population.

$$\rightarrow$$
 R₀ x S = 1

Die Übertragung geschieht in solchen Fällen meist horizontal..

Das Virus bleibt in der Population

2°

Die evolvierende Interaktion

Übergang von Viren aus einer adaptierten Population auf eine naive Population

•
$$S = 1$$

→ Empfänglicher Anteil der Population ist vorhanden

•
$$R_0 \times S > 1$$

→ Der Virus breitet sich über die Population aus

 $(R_0 \times S = 1 - Virus \ verbleibt \ in \ der \ Population)$

3°

In der "Sackgasse"- Interaktion infiziert ein Virus eine neue Population, kann sich aber darin nicht etablieren

$$\rightarrow$$
 ", dead end": $R_0 \sim -0$

$$\rightarrow$$
 und $R_0 \times S = 0$

"Sackgasse":

- Eine Infektion aus einem Sackgassenwirt ist nicht mehr möglich
- Evtl. stirbt der Wirt uns eliminiert somit auch den Virus

4°

Resistenten Interaktion

• Der Übergang von Viren erfolgt in eine Population, in der keine Virusreplikation stattfinden kann.

Bsp.:

- 1. Der immunologische Status ist sehr hoch
- 2. Keine empfänglichen Wirte sind vorhanden